Direct Minimization of Error Rates in Multivariate Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Minimization of Error Rates

We propose a computer intensive method for linear dimension reduction which minimizes the classiication error directly. Simulated annealing (Bohachevsky et al. 1986) as a modern optimization technique is used to solve this problem eeectively. This approach easily allows to incorporate user requests by means of penalty terms. Simulations demonstrate the superiority of optimal classiication to cl...

متن کامل

Neural Network Classification Using Error Entropy Minimization

One way of using the entropy criteria in learning systems is to minimize the entropy of the error between two variables: typically, one is the output of the learning system and the other is the target. This framework has been used for regression. In this paper we show how to use the minimization of the entropy of the error for classification. The minimization of the entropy of the error implies...

متن کامل

Direct Error Rate Minimization of Hidden Markov Models

We explore discriminative training of HMM parameters that directly minimizes the expected error rate. In discriminative training one is interested in training a system to minimize a desired error function, like word error rate, phone error rate, or frame error rate. We review a recent method (McAllester, Hazan and Keshet, 2010), which introduces an analytic expression for the gradient of the ex...

متن کامل

Direct Error Rate Minimization for Statistical Machine Translation

Minimum error rate training is often the preferred method for optimizing parameters of statistical machine translation systems. MERT minimizes error rate by using a surrogate representation of the search space, such as N best lists or hypergraphs, which only offer an incomplete view of the search space. In our work, we instead minimize error rate directly by integrating the decoder into the min...

متن کامل

The Error Entropy Minimization Algorithm for Neural Network Classification

One way of using the entropy criteria in learning systems is to minimize the entropy of the error between two variables: typically, one is the output of the learning system and the other is the target. This framework has been used for regression. In this paper we show how to use the minimization of the entropy of the error for classification. The minimization of the entropy of the error implies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2002

ISSN: 0943-4062,1613-9658

DOI: 10.1007/s001800200089